Machine Learning‐Based Filtered Drag Model for Cohesive Gas‐Particle Flows

Author:

Tausendschön Josef1,Sundaresan Sankaran2,Salehi Mohammadsadegh1,Radl Stefan1

Affiliation:

1. Graz University of Technology Institute of Process and Particle Engineering Inffeldgasse 13/III 8010 Graz Austria

2. Princeton University Department of Chemical and Biological Engineering 08544 Princeton NJ USA

Abstract

AbstractThe accuracy of filtered two‐fluid model simulations critically depends on constitutive models for corrections that account for the effects of inhomogeneous structures at the sub‐grid level. The complexity of accounting these structures increases with cohesion. In the present study, a dataset from filtered Euler‐Lagrange simulations with systematic variations of the cohesion level and the filter length was created to investigate the development of a machine learning‐based drag correction model for liquid bridge‐induced cohesive gas‐particle flows. A‐priori tests revealed that these models afford robust and accurate predictions of the drag correction and the actual drag force. Further it was demonstrated that an anisotropic drag correction model is more accurate than an isotropic model.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3