Instability of secondary vortices generated by a vortex pair in ground effect

Author:

Harris D. M.,Williamson C. H. K.

Abstract

AbstractIn this work, we investigate the approach of a descending vortex pair to a horizontal ground plane. As in previous studies, the primary vortices exhibit a ‘rebound’, due to the separation of secondary opposite-sign vortices underneath each primary vortex. On each side of the flow, the weaker secondary vortex can become three-dimensionally unstable, as it advects around the stronger primary vortex. It has been suggested in several recent numerical simulations that elliptic instability is the origin of such waviness in the secondary vortices. In the present research, we employ a technique whereby the primary vortices are visualized separately from the secondary vortices; in fact, we are able to mark the secondary vortex separation, often leaving the primary vortices invisible. We find that the vortices are bent as a whole in a Crow-type ‘displacement’ mode, and, by keeping the primary vortices invisible, we are able to see both sides of the flow simultaneously, showing that the instability perturbations on the secondary vortices are antisymmetric. Triggered by previous research on four-vortex aircraft wake flows, we analyse one half of the flow as an unequal-strength counter-rotating pair, noting that it is essential to take into account the angular velocity of the weak vortex around the stronger primary vortex in the analysis. In contrast with previous results for the vortex–ground interaction, we find that the measured secondary vortex wavelength corresponds well with the displacement bending mode, similar to the Crow-type instability. We have analysed the elliptic instability modes, by employing the approximate dispersion relation of Le Dizés & Laporte (J. Fluid Mech., vol. 471, 2002, p. 169) in our problem, finding that the experimental wavelength is distinctly longer than predicted for the higher-order elliptic modes. Finally, we observe that the secondary vortices deform into a distinct waviness along their lengths, and this places two rows of highly stretched vertical segments of the vortices in between the horizontal primary vortices. The two rows of alternating-sign vortices translate towards each other and ultimately merge into a single vortex row. A simple point vortex row model is able to predict trajectories of such vortex rows, and the net result of the model’s ‘orbital’ or ‘passing’ modes is to bring like-sign vortices, from each secondary vortex row, close to each other, such that merging may ensue in the experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. Streamwise vortex structure in plane mixing layers

2. Coherent Motions in the Turbulent Boundary Layer

3. Three-Dimensional Instability of Elliptical Flow

4. 54. Williamson C. H. K. 1982 Unsteady flows around bluff bodies. PhD thesis, Cambridge University.

5. 14. Dee F. W. & Nicholas O. P. 1968 Flight measurements of wing-tip vortex motion near the ground. CP 1065. British Aeronautical Research Council.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3