Aircraft Wake Evolution Prediction Based on Parallel Hybrid Neural Network Model

Author:

Deng Leilei1ORCID,Pan Weijun1,Wang Yuhao1,Luan Tian1ORCID,Leng Yuanfei2

Affiliation:

1. School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China

2. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract

To overcome the time-consuming drawbacks of Computational Fluid Dynamics (CFD) numerical simulations, this paper proposes a hybrid model named PA-TLA (parallel architecture combining a TCN, LSTM, and an attention mechanism) based on the concept of intelligent aerodynamics and a parallel architecture. This model utilizes CFD data to drive efficient predictions of aircraft wake evolution at different initial altitudes during the approach phase. Initially, CFD simulations of continuous initial altitudes during the approach phase are used to generate aircraft wake evolution data, which are then validated against real-world LIDAR data to verify their reliability. The PA-TLA model is designed based on a parallel architecture, combining Long Short-Term Memory (LSTM) networks, Temporal Convolutional Networks (TCNs), and a tensor concatenation module based on the attention mechanism, which ensures computational efficiency while fully leveraging the advantages of each component in a parallel processing framework. The study results show that the PA-TLA model outperforms both the LSTM and TCN models in predicting the three characteristic parameters of aircraft wake: vorticity, circulation, and Q-criterion. Compared to the serially structured TCN-LSTM, PA-TLA achieves an average reduction in mean squared error (MSE) of 6.80%, in mean absolute error (MAE) of 7.70%, and in root mean square error (RMSE) of 4.47%, with an average increase in the coefficient of determination (R2) of 0.36% and a 35% improvement in prediction efficiency. Lastly, this study combines numerical simulations and the PA-TLA deep learning architecture to analyze the near-ground wake vortex evolution. The results indicate that the ground effect increases air resistance and turbulence as vortices approach the ground, thereby slowing the decay rate of the wake vortex strength at lower altitudes. The ground effect also accelerates the dissipation and movement of vortex centers, causing more pronounced changes in vortex spacing at lower altitudes. Additionally, the vortex center height at lower altitudes initially decreases and then increases, unlike the continuous decrease observed at higher altitudes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3