Theory of the momentum source method for synthetic turbulence

Author:

Shao Mingyu,Jiang HanboORCID,Chen Shiyi

Abstract

The interaction between turbulence and blade leading edges is known to have a significant impact on the aerodynamic and aeroacoustic performance of propellers. In addition to directly simulating turbulence, synthetic turbulence, such as the momentum source method, has been developed as a popular method for studying this interaction process in computational fluid dynamics and computational aeroacoustics. However, it is found that for non-periodic disturbances, although the induced velocity field is divergence-free, spurious noise may be generated in the source region and contaminate simulation results. To address this issue, the present work proposes adding a correction term so that the divergence-free condition is satisfied globally and the unwanted acoustic waves are suppressed, as an extension to our previous work for time-periodic gusts [H. Jiang, Phys. Fluids 35, 096115 (2023)]. The strength of the proposed approach lies in its simplicity, flexibility, and generality. First, it derives explicit source terms, which are straightforward for numerical implementations, to generate unsteady flow fluctuations. Second, the sources can be added inside the computational domain, saving computational costs for turbulence convection and being compatible with most existing boundary conditions. Third, the proposed method can obtain analytical expressions for the needed momentum source of the Navier–Stokes equation subject to any desired isotropic or anisotropic divergence-free turbulence fields. The method has been verified by examples of synthesizing harmonic gusts, Gaussian eddies, and random turbulence. The synthetic velocity results characterized by different spectral components are directly compared to target velocity fields, verifying the proposed approach and showing its capability. Parameters that influence the distribution of added sources are systematically investigated to identify an optimal combination for different scenarios. Finally, the model is employed to evaluate the aerodynamic interaction between an incoming turbulence and a thin airfoil. The obtained results exhibit good correspondence with analytical solutions.

Funder

National Natural Science Foundation of China

Basic Public Welfare Research Program of Zhejiang Province

Science and Technology Innovation 2025 Major Project of Ningbo

Laboratory of Aerodynamic Noise Control

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3