Educing the source mechanism associated with downstream radiation in subsonic jets

Author:

Kerhervé F.,Jordan P.,Cavalieri A. V. G.,Delville J.,Bogey C.,Juvé D.

Abstract

AbstractThis work belongs to the ongoing debate surrounding the mechanism responsible for low-angle sound emission from subsonic jets. The flow, simulated by large eddy simulation (Bogey & Bailly, Comput. Fluids, vol. 35 (10), 2006a, pp. 1344–1358), is a Mach 0.9 jet with Reynolds number, based on the exit diameter, of $4\ensuremath{\times} 1{0}^{5} $. A methodology is implemented to educe, explore and model the flow motions associated with low-angle sound radiation. The eduction procedure, which is based on frequency–wavenumber filtering of the sound field and subsequent conditional analysis of the turbulent jet, provides access to space- and time-dependent (hydrodynamic) pressure and velocity fields. Analysis of these shows the low-angle sound emission to be underpinned by dynamics comprising space and time modulation of axially coherent wavepackets: temporally localized energization of wavepackets is observed to be correlated with the generation of high-amplitude acoustic bursts. Quantitative validation is provided by means of a simplified line-source Ansatz (Cavalieri et al. J. Sound Vib., vol. 330, 2011b, pp. 4474–4492). The dynamic nature of the educed field is then assessed using linear stability theory (LST). The educed pressure and velocity fields are found to compare well with LST: the radial structures of these match the corresponding LST eigenfunctions; the axial evolutions of their fluctuation energy are consistent with the LST amplification rates; and the relative amplitudes of the pressure and velocity fluctuations, which are educed independently of one another, are consistent with LST.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference80 articles.

1. The near pressure field of co-axial subsonic jets

2. 72. Tinney C. E. , Glauser M. N. & Ukeiley L. 2005 The evolution of the most energetic modes in high subsonic Mach number turbulent jets. In 43rd AIAA Aerospace Science, Paper 2005-0417.

3. Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets

4. Wave-Packet Models for Large-Scale Mixing Noise

5. Survey on jet instability theory

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3