Reduced-order models of aeroacoustic sources for sound radiated in twin subsonic jets

Author:

Muthichur NishanthORCID,Vempati Chandan,Hemchandra SantoshORCID,Samanta ArnabORCID

Abstract

We construct reduced-order models of aeroacoustic sources for single and twin subsonic jets ( $M_j=0.9$ , $Re=3600$ ), with the goal of accurately recovering the far-field sound over a wide band of frequencies $St=[0.07,1.0]$ and directivity angles $\phi = [30^{\circ },120^{\circ }]$ within a subdecibel level accuracy. These models are realized via combining spatio-temporally coherent spectral proper orthogonal decomposition (SPOD) modes extracted directly from Lighthill's stress tensor, itself calculated using large-eddy simulation (LES). We consider two sets of twin subsonic jets of diameter $D$ each, with spacings of $0.1D$ and $1D$ , where the jets merge upstream and downstream of breakdown, respectively. The closely spaced twin jet decays the slowest due to reduced turbulent stresses which are, however, more broadband due to early merging. Such jets show strong shielding in the plane of jets, especially at shallow directivity angles where sound levels may drop below that of the single jet. The farther spaced twin jets have dynamics more akin to the constituent single jet with turbulent fluctuations peaking here at $St=0.34$ , but showing very little shielding, with their overall sound pressure level (OASPL) mostly linked to the nature of extra flow structures created during merging. Three-dimensional, energy-ranked, coherent structures for twin jets exhibit rather poor low-rank behaviour, especially at the far-field spectral peak $St=0.14$ . At $St \gtrsim 0.3$ , the SPOD wavepackets show strong visual coherence, resembling Kelvin–Helmholtz instability modes upstream of breakdown, while at the lower frequencies, there is very little spatial coherence with wavepackets peaking downstream of breakdown. Although the leading SPOD modes radiate poorly, reduced-order models using a subset of them, up to $45$ SPOD modes per frequency, show a remarkable match (within $1$  dB) against the LES-predicted sound over $0.1 \lesssim St \lesssim 0.5$ , at all angles investigated. At other frequencies, the closely spaced twin jet shows more error, due to its greater hierarchy of spatio-temporal structures, showing slower convergence at the shallower angles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Fluidic Injection on the Radiated Sound in a Mach 0.5 Jet;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

2. Identifying Noise Source Regions in a Supersonic Jet Using Information Flux Methods;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3