Author:
Protas Bartosz,Elcrat Alan
Abstract
We consider the linear stability of Hill’s vortex with respect to axisymmetric perturbations. Given that Hill’s vortex is a solution of a free-boundary problem, this stability analysis is performed by applying methods of shape differentiation to the contour dynamics formulation of the problem in a three-dimensional axisymmetric geometry. This approach allows us to systematically account for the effect of boundary deformations on the linearized evolution of the vortex under the constraint of constant circulation. The resulting singular integro-differential operator defined on the vortex boundary is discretized with a highly accurate spectral approach. This operator has two unstable and two stable eigenvalues complemented by a continuous spectrum of neutrally stable eigenvalues. By considering a family of suitably regularized (smoothed) eigenvalue problems solved with a range of numerical resolutions, we demonstrate that the corresponding eigenfunctions are in fact singular objects in the form of infinitely sharp peaks localized at the front and rear stagnation points. These findings thus refine the results of the classical analysis by Moffatt & Moore (J. Fluid Mech., vol. 87, 1978, pp. 749–760).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献