On the linear stability of the Lamb–Chaplygin dipole

Author:

Protas BartoszORCID

Abstract

The Lamb–Chaplygin dipole (Lamb, Hydrodynamics, 2nd edn, 1895, Cambridge University Press; Lamb, Hydrodynamics, 3rd edn, 1906, Cambridge University Press; Chaplygin, Trudy Otd. Fiz. Nauk Imper. Mosk. Obshch. Lyub. Estest., vol. 11, 1903, pp. 11–14) is one of the few closed-form relative equilibrium solutions of the two-dimensional (2-D) Euler equation characterized by a continuous vorticity distribution. We consider the problem of its linear stability with respect to 2-D circulation-preserving perturbations. It is demonstrated that this flow is linearly unstable, although the nature of this instability is subtle and cannot be fully understood without accounting for infinite-dimensional aspects of the problem. To elucidate this, we first derive a convenient form of the linearized Euler equation defined within the vortex core which accounts for the potential flow outside the core while making it possible to track deformations of the vortical region. The linear stability of the flow is then determined by the spectrum of the corresponding operator. Asymptotic analysis of the associated eigenvalue problem shows the existence of approximate eigenfunctions in the form of short-wavelength oscillations localized near the boundary of the vortex and these findings are confirmed by the numerical solution of the eigenvalue problem. However, the time integration of the 2-D Euler system reveals the existence of only one linearly unstable eigenmode and since the corresponding eigenvalue is embedded in the essential spectrum of the operator, this unstable eigenmode is also shown to be a distribution characterized by short-wavelength oscillations rather than a smooth function. These findings are consistent with the general results known about the stability of equilibria in 2-D Euler flows and have been verified by performing computations with different numerical resolutions and arithmetic precisions.

Funder

Alliance de recherche numérique du Canada

Isaac Newton Institute for Mathematical Sciences

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3