The pitfalls of investigating rotational flows with the Euler equations

Author:

Smith Warren R.ORCID,Wang QianxiORCID

Abstract

Small viscous effects in high-Reynolds-number rotational flows always accumulate over time to have a leading-order effect. Therefore, the high-Reynolds-number limit for the Navier–Stokes equations is singular. It is important to investigate whether a solution of the Euler equations can approximate a real flow at large Reynolds number. These facts are often overlooked and, as a result, the Euler equations are used to simulate laminar rotational flows at large Reynolds number. Based on the Fredholm alternative, an asymptotic perturbation theory is described to establish secularity conditions determined by viscosity for an inviscid solution to approximate a real viscous fluid. Four important classical inviscid solutions are investigated using the theory with the following conclusions. The Stuart cats’ eyes and Mallier–Maslowe vortices are inconsistent with any real fluid at high Reynolds number; whereas Hill's spherical vortex is confirmed to be consistent with a steady state in the spherical core region and the Lamb–Chaplygin dipole is found to be consistent with a quasi-steady state in the circular core region. These solutions have been widely used for analysing the stability of vortex flows and wakes, and their interactions with shock waves or bubbles. Serendipitously, we have revealed an original exact solution of the Navier–Stokes equations which is time dependent, has non-zero nonlinear convective terms and is restricted to a finite domain with the decay rate depending on dipole radius.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3