Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence

Author:

Uhlmann MarkusORCID,Chouippe Agathe

Abstract

We have performed interface-resolved direct numerical simulations of forced homogeneous-isotropic turbulence in a dilute suspension of spherical particles in the Reynolds number range $Re_{\unicode[STIX]{x1D706}}=115{-}140$. The solid–fluid density ratio was set to $1.5$, gravity was set to zero and two particle diameters were investigated corresponding to approximately $5$ and $11$ Kolmogorov lengths. Note that these particle sizes are clearly outside the range of validity of the point-particle approximation, as has been shown by Homann & Bec (J. Fluid Mech., vol. 651, 2010, pp. 81–91). At the present parameter points the global effect of the particles upon the fluid flow is weak. We observe that the dispersed phase exhibits clustering with moderate intensity. The tendency to cluster, which was quantified in terms of the standard deviation of Voronoï cell volumes, decreases with the particle diameter. We have analysed the relation between particle locations and the location of intense vortical flow structures. The results do not reveal any significant statistical correlation. Contrarily, we have detected a small but statistically significant preferential location of particles with respect to the ‘sticky points’ proposed by Goto & Vassilicos (Phys. Rev. Lett., vol. 100 (5), 2008, 054503), i.e. points where the fluid acceleration field is acting such as to increase the local particle concentration in one-way coupled point-particle models under Stokes drag. The presently found statistical correlation between the ‘sticky points’ and the particle locations further increases when focusing on regions with high local concentration. Our results suggest that small finite-size particles can be brought together along the expansive directions of the fluid acceleration field, as previously observed only for the simplest model for sub-Kolmogorov particles. We further discuss the effect of density ratio and collective particle motion upon the basic Eulerian and Lagrangian statistics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3