Measurement of particle accelerations in fully developed turbulence

Author:

VOTH GREG A.,LA PORTA A.,CRAWFORD ALICE M.,ALEXANDER JIM,BODENSCHATZ EBERHARD

Abstract

We use silicon strip detectors (originally developed for the CLEO III high-energy particle physics experiment) to measure fluid particle trajectories in turbulence with temporal resolution of up to 70000 frames per second. This high frame rate allows the Kolmogorov time scale of a turbulent water flow to be fully resolved for 140 [ges ] Rλ [ges ] 970. Particle trajectories exhibiting accelerations up to 16000 m s −2 (40 times the r.m.s. value) are routinely observed. The probability density function of the acceleration is found to have Reynolds-number-dependent stretched exponential tails. The moments of the acceleration distribution are calculated. The scaling of the acceleration component variance with the energy dissipation is found to be consistent with the results for low-Reynolds-number direct numerical simulations, and with the K41-based Heisenberg–Yaglom prediction for Rλ [ges ] 500. The acceleration flatness is found to increase with Reynolds number, and to exceed 60 at Rλ = 970. The coupling of the acceleration to the large-scale anisotropy is found to be large at low Reynolds number and to decrease as the Reynolds number increases, but to persist at all Reynolds numbers measured. The dependence of the acceleration variance on the size and density of the tracer particles is measured. The autocorrelation function of an acceleration component is measured, and is found to scale with the Kolmogorov time τη.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 367 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3