Why spheroids orient preferentially in near-wall turbulence

Author:

Zhao Lihao,Andersson Helge I.

Abstract

Non-spherical particles are known to orient preferentially in near-wall turbulence, but rod-like and disk-like particles align themselves differently relative to the mean vorticity direction. To uncover the mechanism that gives rise to such preferential particle orientations in anisotropic turbulence, Lagrangian statistics from a channel-flow simulation have been analysed. Ni et al. (J. Fluid Mech., vol. 743, 2014, R3) showed that the fluid vorticity and long rods independently aligned with the Lagrangian fluid stretching direction in isotropic turbulence. Following their approach, we deduced the left Cauchy–Green strain tensor along Lagrangian trajectories of tracer spheroids in channel-flow turbulence. The results showed that the alignment of the fluid vorticity vector with the strongest Lagrangian stretching direction in the channel centre, just as in isotropic turbulence, vanished in the vicinity of the walls. The analysis revealed that the directions of the strongest Lagrangian stretching and compression in near-wall turbulence are in the streamwise and wall-normal directions, respectively. All over the channel we found that the symmetry axis of prolate spheroids aligned with the direction of strongest Lagrangian stretching whereas oblate spheroids oriented with the direction of Lagrangian compression. This finding is apparently universal since the same trends were found in highly anisotropic wall turbulence as well as in isotropic turbulence. Contrary to the prevailing view, we have shown for the first time that the preferential orientation of the symmetry axis of long rods in the streamwise direction and of flat disks in the wall-normal direction is caused by Lagrangian stretching and not by fluid rotation. This finding fills a gap in our understanding of orientation and rotation of tracer spheroids in anisotropic wall turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

1. Rotation Rate of Rods in Turbulent Fluid Flow

2. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent;Bettencourt;J. Phys. A,2013

3. Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence

4. Shape-dependence of particle rotation in isotropic turbulence;Capone;Phys. Fluids,2015

5. Rotation of Nonspherical Particles in Turbulent Channel Flow

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3