Author:
Ni Rui,Ouellette Nicholas T.,Voth Greg A.
Abstract
AbstractStretching in continuum mechanics is naturally described using the Cauchy–Green strain tensors. These tensors quantify the Lagrangian stretching experienced by a material element, and provide a powerful way to study processes in turbulent fluid flows that involve stretching such as vortex stretching and alignment of anisotropic particles. Analysing data from a simulation of isotropic turbulence, we observe preferential alignment between rods and vorticity. We show that this alignment arises because both of these quantities independently tend to align with the strongest Lagrangian stretching direction, as defined by the maximum eigenvector of the left Cauchy–Green strain tensor. In particular, rods approach almost perfect alignment with the strongest stretching direction. The alignment of vorticity with stretching is weaker, but still much stronger than previously observed alignment of vorticity with the eigenvectors of the Eulerian strain rate tensor. The alignment of strong vorticity is almost the same as that of rods that have experienced the same stretching.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献