Influence of small inertia on Jeffery orbits

Author:

Di Giusto DavideORCID,Bergougnoux LaurenceORCID,Marchioli CristianORCID,Guazzelli ÉlisabethORCID

Abstract

We experimentally investigate the rotational dynamics of neutrally buoyant axisymmetric particles in a simple shear flow. A custom-built shearing cell and a multi-view shape-reconstruction method are used to obtain direct measurements of the orientation and period of rotation of particles having oblate and prolate shapes (such as spheroids and cylinders) of varying aspect ratios. By systematically changing the viscosity of the fluid, we examine the effect of inertia (which may be originated from either phase) on the dynamical behaviour of these suspended particles up to a particle Reynolds number of approximately one. While no significant effect on the period of rotation is found in this small-inertia regime, a systematic drift among several rotations toward limiting stable orbits is observed. Prolate particles are seen to drift towards the tumbling orbit in the plane of shear, whereas oblate particles are driven either to the tumbling or to the vorticity-aligned spinning orbits, depending on their initial orientation. These results are compared with recent small-inertia asymptotic theories, assessing their range of validity, as well as to numerical simulations in the small-inertia regime for both prolate and oblate particles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3