Moffatt-drift-driven large-scale dynamo due to  fluctuations with non-zero correlation times

Author:

Singh Nishant K.

Abstract

We present a theory of large-scale dynamo action in a turbulent flow that has stochastic, zero-mean fluctuations of the ${\it\alpha}$ parameter. Particularly interesting is the possibility of the growth of the mean magnetic field due to Moffatt drift, which is expected to be finite in a statistically anisotropic turbulence. We extend the Kraichnan–Moffatt model to explore effects of finite memory of ${\it\alpha}$ fluctuations, in a spirit similar to that of Sridhar & Singh (Mon. Not. R. Astron. Soc., vol. 445, 2014, pp. 3770–3787). Using the first-order smoothing approximation, we derive a linear integro-differential equation governing the dynamics of the large-scale magnetic field, which is non-perturbative in the ${\it\alpha}$-correlation time ${\it\tau}_{{\it\alpha}}$. We recover earlier results in the exactly solvable white-noise limit where the Moffatt drift does not contribute to the dynamo growth/decay. To study finite-memory effects, we reduce the integro-differential equation to a partial differential equation by assuming that ${\it\tau}_{{\it\alpha}}$ be small but non-zero and the large-scale magnetic field is slowly varying. We derive the dispersion relation and provide an explicit expression for the growth rate as a function of four independent parameters. When ${\it\tau}_{{\it\alpha}}\neq 0$, we find that: (i) in the absence of the Moffatt drift, but with finite Kraichnan diffusivity, only strong ${\it\alpha}$ fluctuations can enable a mean-field dynamo (this is qualitatively similar to the white-noise case); (ii) in the general case when also the Moffatt drift is non-zero, both weak and strong ${\it\alpha}$ fluctuations can lead to a large-scale dynamo; and (iii) there always exists a wavenumber ($k$) cutoff at some large $k$ beyond which the growth rate turns negative, irrespective of weak or strong ${\it\alpha}$ fluctuations. Thus we show that a finite Moffatt drift can always facilitate large-scale dynamo action if sufficiently strong, even in the case of weak ${\it\alpha}$ fluctuations, and the maximum growth occurs at intermediate wavenumbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3