The elemental shear dynamo

Author:

McWilliams James C.

Abstract

AbstractA quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially growing, large-scale (mean) magnetic dynamo in the presence of a uniform parallel shear flow. It is a ‘kinematic’ theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of nonlinear magnetohydrodynamics, and it is rigorously derived in the limit of small magnetic Reynolds number, ${\mathit{Re}}_{\eta } \ll 1$. Dynamo action occurs even without mean helicity in the forcing or flow, but random helicity variance is then essential. In a sufficiently large domain and with a small seed wavenumber in the direction perpendicular to the mean shearing plane, a positive exponential growth rate $\gamma $ can occur for arbitrary values of ${\mathit{Re}}_{\eta } $, viscous Reynolds number ${\mathit{Re}}_{\nu } $, and random-force correlation time ${t}_{f} $ and orientation angle ${\theta }_{f} $ in the shearing plane. The value of $\gamma $ is independent of the domain size. The shear dynamo is ‘fast’, with finite $\gamma \gt 0$ in the limit of ${\mathit{Re}}_{\eta } \gg 1$. Averaged over random realizations of the forcing history, the ensemble-mean magnetic field grows more slowly, if at all, compared to the r.m.s. field (magnetic energy). In the limit of small ${\mathit{Re}}_{\eta } $ and ${\mathit{Re}}_{\nu } $, the dynamo behaviour is related to the well-known alpha–omega ansatz when the force is slowly varying ($\gamma {t}_{f} \gg 1$) and to the ‘incoherent’ alpha–omega ansatz when the force is more rapidly fluctuating.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Quasi-linear Theory for Surface Wave-Current Interactions;2022

2. Mean field dynamo action in shearing flows – II. Fluctuating kinetic helicity with zero mean;Monthly Notices of the Royal Astronomical Society;2021-10-05

3. Variational Approach to Closure of Nonlinear Dynamical Systems: Autonomous Case;Journal of Statistical Physics;2019-12-14

4. Dynamo theories;Journal of Plasma Physics;2019-08

5. Generation of large-scale magnetic fields due to fluctuating in shearing systems;Journal of Plasma Physics;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3