On the shear-current effect: toward understanding why theories and simulations have mutually and separately conflicted

Author:

Zhou Hongzhe1ORCID,Blackman Eric G23ORCID

Affiliation:

1. Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden

2. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

3. Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA

Abstract

ABSTRACT The shear-current effect (SCE) of mean-field dynamo theory refers to the combination of a shear flow and a turbulent coefficient β21 with a favourable negative sign for exponential mean-field growth, rather than positive for diffusion. There have been long-standing disagreements among theoretical calculations and comparisons of theory with numerical experiments as to the sign of kinetic ($\beta ^u_{21}$) and magnetic ($\beta ^b_{21}$) contributions. To resolve these discrepancies, we combine an analytical approach with simulations, and show that unlike $\beta ^b_{21}$, the kinetic SCE $\beta ^u_{21}$ has a strong dependence on the kinetic energy spectral index and can transit from positive to negative values at $\mathcal {O}(10)$ Reynolds numbers if the spectrum is not too steep. Conversely, $\beta ^b_{21}$ is always negative regardless of the spectral index and Reynolds numbers. For very steep energy spectra, the positive $\beta ^u_{21}$ can dominate even at energy equipartition urms ≃ brms, resulting in a positive total β21 even though $\beta ^b_{21}\lt 0$. Our findings bridge the gap between the seemingly contradictory results from the second-order-correlation approximation versus the spectral-τ closure, for which opposite signs for $\beta ^u_{21}$ have been reported, with the same sign for $\beta ^b_{21}\lt 0$. The results also offer an explanation for the simulations that find $\beta ^u_{21}\gt 0$ and an inconclusive overall sign of β21 for $\mathcal {O}(10)$ Reynolds numbers. The transient behaviour of $\beta ^u_{21}$ is demonstrated using the kinematic test-field method. We compute dynamo growth rates for cases with or without rotation, and discuss opportunities for further work.

Funder

U.S. Department of Energy

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational instability-driven turbulence;Physical Review E;2023-12-01

2. Helical and non-helical large-scale dynamos in thin accretion discs;Monthly Notices of the Royal Astronomical Society;2023-11-06

3. Galactic Dynamos;Annual Review of Astronomy and Astrophysics;2023-08-18

4. On large-scale dynamos with stable stratification and the application to stellar radiative zones;Monthly Notices of the Royal Astronomical Society;2022-09-22

5. Compressible Test-field Method and Its Application to Shear Dynamos;The Astrophysical Journal;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3