Scale-to-scale turbulence modification by small settling particles

Author:

Hassaini RoumaissaORCID,Coletti FilippoORCID

Abstract

Despite decades of investigations, there is still no consensus on whether inertial particles augment or dampen turbulence. Here, we perform the first experimental study in which the particle concentration is varied systematically across a broad range of volume fractions $\varPhi _{v}$ , from nominally one-way coupled to heavily two-way coupled regimes, keeping all other parameters constant. We utilize a zero-mean flow chamber where steady, homogeneous and approximately isotropic air turbulence is realized, with a Taylor-microscale Reynolds number $Re_{\lambda } = 150\unicode{x2013}300$ . We consider spherical solid particles of two sizes, both much smaller than the Kolmogorov length, and yielding Stokes numbers $St_{\eta } = 0.3$ and 2.6 based on the Kolmogorov time scale. By adjusting the turbulent intensity, the settling velocity parameter is kept constant for both cases, $Sv_{\eta } = V_{t}/u_{\eta }\approx 3$ (where $V_{t}$ is the still-air terminal velocity, and $u_{\eta }$ is the Kolmogorov velocity scale). Unlike previous studies focused on massively inertial particles, we find that the turbulent kinetic energy increases with particle loading, being more than doubled at $\varPhi _{v} =5\times 10^{-5}$ . This is attributed to the energy input associated with gravitational settling: the particles release their potential energy into the fluid and increase its dissipation rate, while the time scale associated with the inter-scale energy transfer is not strongly changed. Two-point statistics indicate that the energy-containing eddies become vertically elongated in the presence of falling particles, and that the latter redistribute the energy more homogeneously across the scales compared to unladen turbulence. This is rooted in an enhanced cascade, as shown by the nonlinear inter-scale energy transfer rate.

Funder

U.S. Department of Defense

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3