Viscosity-modulated clustering of heated bidispersed particles in a turbulent gas

Author:

Saieed AhmedORCID,Hickey Jean-PierreORCID

Abstract

Clustering of externally and evenly heated particles is enhanced by the increased viscosity of heated fluid in the vicinity of these clusters – a phenomenon known as viscous capturing (VC). Herein we study, via direct numerical simulations of decaying turbulence, the effect of temperature-driven viscosity on clustering with different particle loading densities. We employ a two-way momentum and energy coupling, and gas viscosity is modelled by a power law to understand the role of the increased drag and particle back-reaction force on the clustering intensity. For the continuum and dispersed phases, Eulerian and Lagrangian point particle schemes have been used, neglecting inter-particle collisions. We found that the enhanced viscosity-driven clustering is a strong function of particle loading density, as the increase in particle number density enables the formation of large uneven clusters before heating, which is the main condition for VC to take effect. Higher number density should result in greater turbulence modulation and negate local temperature-based viscous effects leading to VC. However, due to higher local particle number density in the clusters and interphase heat transfer, increased drag force prevails in such cases and delivers excessive clustering. By sampling conditionally the particle velocity and temperature inside the clusters, it is found that the thermodynamic and kinematic properties of the particles in the clusters are highly correlated, and this correlation increases with the particle loading density. Therefore, based on the particle number density, temperature-based viscosity can enhance considerably the clustering of heated particles and alter the effect of particles on the underlying turbulence.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3