Dynamics and scaling of particle streaks in high-Reynolds-number turbulent boundary layers

Author:

Berk TimORCID,Coletti FilippoORCID

Abstract

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number$Re_\tau = {O}(10^4)$allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number$St^+=18$–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We perform simultaneous imaging of both carrier and dispersed phases along wall-parallel planes in the logarithmic layer, demonstrating that streamwise particle streaks largely overlap with large-scale low-speed flow regions. The fluid–particle slip velocity indicates that with increasing inertia, the particle streaks outlive the low-speed fluid streaks. Moreover, two-point statistics show that the width of the particle streaks increases linearly with Stokes number, bounded by the size of the coherent flow structures. Finally, the particle-sampled flow topology suggests that particle streaks reside between the legs of hairpin packets. From these observations, we infer a conceptual view of the formation of particle streaks in the frame of the attached eddy model. A scaling for the particle streaks’ width is derived as a function of$Re_\tau$and$St^+$, which reproduces the measured trends and predicts widths${O}(0.1)$m in the atmospheric surface layer, comparable to aeolian streamers observed in the field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3