Self-similar mechanisms in wall turbulence studied using resolvent analysis

Author:

Karban U.ORCID,Martini E.ORCID,Cavalieri A.V.G.ORCID,Lesshafft L.ORCID,Jordan P.ORCID

Abstract

Self-similarity of wall-attached coherent structures in a turbulent channel at $Re_\tau =543$ is explored by means of resolvent analysis. In this modelling framework, coherent structures are understood to arise as a response of the linearised mean-flow operator to generalised frequency-dependent Reynolds stresses, considered to act as an endogenous forcing. We assess the self-similarity of both the wall-attached flow structures and the associated forcing. The former are educed from direct numerical simulation data by finding the flow field correlated with the wall shear, whereas the latter is identified using a frequency space version of extended proper orthogonal decomposition (Borée, Exp. Fluids, vol. 35, issue 2, 2003, pp. 188–192). The forcing structures identified are compared to those obtained using the resolvent-based estimation introduced by Towne et al. (J. Fluid Mech., vol. 883, 2020, A17). The analysis reveals self-similarity of both wall-attached structures – in quantitative agreement with Townsend's hypothesis of self-similar attached eddies – and the underlying forcing, at least in certain components.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference74 articles.

1. Flow structures in transitional and turbulent boundary layers;Lee;Phys. Fluids,2019

2. Ambiguity in mean-flow-based linear analysis

3. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows

4. Large-scale features in turbulent pipe and channel flows

5. Baltzer, J. , Adrian, R. & Wu, X. 2010 Turbulent boundary layer structure identification via POD. In Proceedings of the Summer Program 2010, pp. 55–64. Center for Turbulence Research, Stanford University.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3