A resolvent-based prediction framework for incompressible turbulent channel flow with limited measurements

Author:

Ying AnjiaORCID,Liang TianORCID,Li ZhigangORCID,Fu LinORCID

Abstract

A new resolvent-based method is developed to predict the space–time properties of the flow field. To overcome the deterioration of the prediction accuracy with increasing distance between the measurements and predictions in the resolvent-based estimation (RBE), the newly proposed method utilizes the RBE to estimate the relative energy distribution near the wall rather than the absolute energy directly estimated from the measurements. Using this extra information from RBE, the new method modifies the energy distribution of the spatially uniform and uncorrelated forcing that drives the flow system by minimizing the norm of the cross-spectral density tensor of the error matrix in the near-wall region in comparison with the RBE-estimated one, and therefore it is named as the resolvent-informed white-noise-based estimation (RWE) method. For validation, three time-resolved direct numerical simulation (DNS) datasets with the friction Reynolds numbers $Re_\tau = 180$ , 550 and 950 are generated, with various locations of measurements ranging from the near-wall region ( $y^+ = 40$ ) to the upper bound of the logarithmic region ( $y/h \approx 0.2$ , where h is the half-channel height) for the predictions. Besides the RWE, three existing methods, i.e. the RBE, the $\lambda$ -model and the white-noise-based estimation (WBE), are also included for the validation. The performance of the RBE and scale-dependent model ( $\lambda$ -model) in predicting the energy spectra shows a strong dependence on the measurement locations. The newly proposed RWE shows a low sensitivity on $Re_{\tau }$ and the measurement locations, which may range from the near-wall region to the upper bound of the logarithmic region, and has a high accuracy in predicting the energy spectra. The RWE also performs well in predicting the space–time properties in terms of the correlation magnitude and the convection velocity. We further utilize the new method to reconstruct the instantaneous large-scale structures with measurements from the logarithmic region. Both the RWE and RBE perform well in estimating the instantaneous large-scale structure, and the RWE has smaller errors in the estimations near the wall. The structural inclination angles around $15^\circ$ are predicted by the RWE and WBE, which generally recover the DNS results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 可压缩壁湍流物理与建模研究进展;Acta Mechanica Sinica;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3