Topological transition and helicity conversion of vortex knots and links

Author:

Shen WeiyuORCID,Yao JieORCID,Hussain FazleORCID,Yang YueORCID

Abstract

Topological transition and helicity conversion of vortex torus knots and links are studied using direct numerical simulations of the incompressible Navier–Stokes equations. We find three topological transitional routes (viz. merging, reconnection and transition to turbulence) in the evolution of vortex knots and links over a range of torus aspect ratios and winding numbers. The topological transition depends not only on the initial topology but also on the initial geometry of knots/links. For small torus aspect ratios, the initially knotted or linked vortex tube rapidly merges into a vortex ring with a complete helicity conversion from the writhe and link components to the twist. For large torus aspect ratios, the vortex knot or link is untied into upper and lower coiled loops via the first vortex reconnection, with a helicity fluctuation including loss of writhe and link, and generation of twist. Then, the relatively unstable lower loop can undergo a secondary reconnection to split into multiple small vortices with a similar helicity fluctuation. Surprisingly, for moderate torus aspect ratios, the incomplete reconnection of tangled vortex loops together with strong vortex interactions triggers transition to turbulence, in which the topological helicity decomposition fails due to the breakdown of vortex core lines.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing turbulence with entangled vortices;Proceedings of the National Academy of Sciences;2024-08-19

2. Vortex bursting and associated twist dynamics on helical vortex tubes and vortex rings;Journal of Fluid Mechanics;2024-05-10

3. Transition induced by a bursting vortex ring in channel flow;Journal of Fluid Mechanics;2024-05-08

4. Interaction between trefoil knotted flame and vortex;Physical Review Fluids;2023-12-05

5. Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation;Physical Review Research;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3