Vortex bursting and associated twist dynamics on helical vortex tubes and vortex rings

Author:

Ji LingboORCID,van Rees Wim M.ORCID

Abstract

The interaction of opposite-signed twist waves on vortex tubes can lead to vortex bursting, a process where the core expands into a double ring-like structure with strong swirling flows. Previous works have studied vortex bursting on rectilinear vortices by axially perturbing the initial core size to generate the twist waves, and observed largely axisymmetric bursting dynamics. In this work, we numerically study bursting on vortical structures with curved centrelines, analysing the interaction between the centreline dynamics, twist wave generation and propagation, and vortex bursting. We focus on axially perturbed helical vortex tubes with small radius-to-pitch ratios up to $0.0625$ , as well as vortex rings with a large radius-to-core size ratio $10$ , both at a circulation-based Reynolds number $5000$ . The results show that though the initial twist wave propagation speeds are relatively unaffected by the curvature and torsion of the centreline, the bursting process is altered significantly compared with rectilinear vortices. The self-induced rotation of the centreline of the helical tube induces a non-axisymmetric distortion of the bursting structure, which rapidly breaks up the vortex core into small-scale helical structures. A similar destabilization of the bursting structure also occurs on vortex rings. The enstrophy increase and accelerated energy decay associated with bursting are predominantly determined by the twist wave strength, rather than the curvature and torsion of the centreline. Combined, our findings imply that bursting could play an important role in transferring and dissipating energy of vortical structures in wakes, and turbulent flows in general.

Funder

Army Research Office

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3