Transition induced by a bursting vortex ring in channel flow

Author:

Wang BoyuanORCID,Yang YueORCID

Abstract

We investigate the influence of vortices remote from the boundary on the near-wall flow dynamics in wall-bounded flows. A vortex ring with precisely controlled local twist is introduced into the outer layer of a channel flow at a moderate Reynolds number. We find that the minimum vorticity flux for triggering the transition to turbulence is significantly reduced from the initial disturbance of an untwisted vortex ring to that of a twisted ring. In particular, the latter disturbance can cause vortex bursting in the early transitional stage. The impact of vortex bursting on the transition process is characterised by the near-wall, wall-normal velocity with the rapid distortion theory. The wall-normal velocity grows during vortex bursting, and leads to streak formation and then the transition to turbulence. The notable wall-normal velocity is induced by the large di-vorticity generated in vortex bursting. We model the growing radial component of the di-vorticity in terms of the local twist, and demonstrate that its surge is due to the generation of highly twisted vortex lines in vortex bursting. Then, we derive that the generation of the di-vorticity in the outer layer enhances the wall-normal velocity in the inner layer via the Poisson equation with the image method and the multipole expansion. Thus, we elucidate that the vortex bursting can have an effect on the transition process.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3