On the centrifugal effect in turbulent rotating thermal convection: onset and heat transport

Author:

Hu Yun-BingORCID,Xie Yi-ChaoORCID,Xia Ke-QingORCID

Abstract

The effect of centrifugal force in turbulent rotating Rayleigh–Bénard convection (RRBC) is studied experimentally in an aspect-ratio $\varGamma =1$ cylindrical convection cell and in the ranges of the Froude number $0.004\leq Fr \leq 0.363$ and the Rayleigh number $2.8\times 10^8 \leq Ra \leq 9.5\times 10^9$, and with the Prandtl number fixed at $Pr=4.34$. We use the bulk temperature anomaly to determine the onset Froude number $Fr_c$, beyond which the centrifugal effects cannot be regarded as insignificant. It is found that $Fr_c$ depends on $Ra$ as $Fr_c\sim Ra^{0.53}$, which may be understood qualitatively by the idea of local force balance. For $Fr>Fr_c$, the centrifugal effect is more pronounced for smaller $Ra$, which is also found for larger constant $1/Ro$. This implies that the response of the system to the centrifugal force depends on the flow states, which, in RRBC, is mainly determined by the competition between the buoyancy and Coriolis forces. Detailed analysis of the sidewall temperature signal shows results consistent with those obtained from the bulk temperature. Based on the above results, we propose a different division of the $1/Ro$$Fr$ phase space than previously suggested. For the heat transport, the results under fixed $1/Ro$ show well-defined $Nu$$Ra$ scalings, which can provide a better prediction for the heat transport when extrapolating to the unexplored regions in the phase space.

Funder

Research Grants Council, University Grants Committee

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3