Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence

Author:

Xia Ke-Qing1ORCID,Huang Shi-Di1,Xie Yi-Chao2,Zhang Lu1

Affiliation:

1. Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen 518055, China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi’an Jiaotong University , Xi’an 710049, China

Abstract

Abstract Tuning transport properties through the manipulation of elementary structures has achieved great success in many areas, such as condensed matter physics. However, the ability to manipulate coherent structures in turbulent flows is much less explored. This article reviews a recently discovered mechanism of tuning turbulent heat transport via coherent structure manipulation. We first show how this mechanism can be realized by applying simple geometrical confinement to a classical thermally driven turbulence, which leads to the condensation of elementary coherent structures and significant heat-transport enhancement, despite the resultant slower flow. Some potential applications of this new paradigm in passive heat management are also discussed. We then explain how the heat transport behaviors in seemingly different turbulence systems can be understood by this unified framework of coherent structure manipulation. Several future directions in this research area are also outlined.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3