Rapidly rotating turbulent Rayleigh-Bénard convection

Author:

Julien K.,Legg S.,Mcwilliams J.,Werne J.

Abstract

Turbulent Boussinesq convection under the influence of rapid rotation (i.e. with comparable characteristic rotation and convection timescales) is studied. The transition to turbulence proceeds through a relatively simple bifurcation sequence, starting with unstable convection rolls at moderate Rayleigh (Ra) and Taylor numbers (Ta) and culminating in a state dominated by coherent plume structures at highRaandTa. Like non-rotating turbulent convection, the rapidly rotating state exhibits a simple power-law dependence onRafor all statistical properties of the flow. When the fluid layer is bounded by no-slip surfaces, the convective heat transport (Nu− 1, whereNuis the Nusselt number) exhibits scaling withRa2/7similar to non-rotating laboratory experiments. When the boundaries are stress free, the heat transport obeys ‘classical’ scaling (Ra1/3) for a limited range inRa, then appears to undergo a transition to a different law atRa≈ 4 × 107. Important dynamical differences between rotating and non-rotating convection are observed: aside from the (expected) differences in the boundary layers due to Ekman pumping effects, angular momentum conservation forces all plume structures created at flow-convergent sites of the heated and cooled boundaries to spin-up cyclonically; the resulting plume/cyclones undergo strong vortex-vortex interactions which dramatically alter the mean state of the flow and result in a finite background temperature gradient asRa→ ∞, holdingRa/Tafixed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference85 articles.

1. Kleiser, L. & Schumann, U. 1980 Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows. In Proc. 3rd GAMM Conf. Numerical Methods in Fluid Mechanics (ed. E. H. Hirschel ), p.165.Vieweg,Braunschweig.

2. Shraiman, B. & Siggia, E. 1990 Heat transport in high-Rayleigh-number convection..Phys. Rev. A42,3650–3653.

3. Adrian, R. J. , Ferreira, R. T. D. S. & Boberg, T. 1986 Turbulent thermal convection in wide horizontal fluid layers.Exps. Fluids 4,121–141.

4. Belmonte, A. , Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence.Phys. Rev. Lett. 70,4067–4070.

5. Howard, L. N. 1966 Convection at high Rayleigh number. In Proc. llth Intl Congr. ofAppl. Mech. Munich (Germany) (ed. H. Gortler ), pp.1109–1115.Springer.

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3