Lubricated viscous gravity currents of power-law fluids. Part 1. Self-similar flow regimes

Author:

Leung Lucas Tsun-yin,Kowal Katarzyna N.ORCID

Abstract

We examine the gravity-driven flow of thin films of viscous fluid of power-law rheology, lubricated by another power-law viscous fluid from below. Such flows are relevant to a range of geophysical and industrial settings, including the flow of ice sheets and fast-flowing ice streams lubricated from below by a layer of subglacial till. We model both layers using lubrication theory in two-dimensional and axisymmetric settings, in the limit in which vertical shear provides the dominant resistance to the flow. The flow is self-similar if the power-law exponents, describing the rheology of the two layers of fluid, are equal. We examine the similarity solutions in both geometries and describe the flow in terms of four distinct flow regimes ranging from thin films of viscous fluid coating a more viscous fluid from above, to thin layers of fluid lubricating a more viscous fluid from below. In contrast to the former scenario, a thin film of a low-viscosity fluid strikingly alters the dynamics of a more viscous fluid when it lubricates it from below: the overlying layer thins, the upper surface gradients lessen and most of the shear is confined to the lower layer. Such features amplify, and this flow regime becomes increasingly dominant when the viscous fluids are shear thinning, like the deformation of glacial ice on the large scale. This flow regime is most relevant to the flow of lubricated ice sheets, which thin and accelerate, forming fast-flowing ice streams, when they are well lubricated from below.

Funder

L'Oreal-UNESCO UK and Ireland, For Women In Science

Trinity College Summer Studentship Scheme

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3