Abstract
We develop a theoretical and experimental framework for generating slip underneath thin-film flows of viscous fluids in the laboratory, with the ability to control slip as desired. Such a framework is useful for large-scale fluid-mechanical experiments in which basal sliding is important. In particular, we consider the flow of a thin film of viscous fluid spreading over a structured, slippery substrate, involving a sequence of two-dimensional cavities that are prewetted with a fluid of smaller viscosity. By averaging over small-scale inhomogeneities, we demonstrate that such a substrate gives rise to a macroscopic linear sliding law, or Navier slip condition, that is effectively homogeneous on the large scale. The slip length, determining the slipperiness of the substrate, is proportional to the viscosity ratio and width of each cavity. As such, the slipperiness of the substrate can be controlled by altering the viscosity ratio, as desired. Two asymptotic regimes arise, describing flow over very slippery substrates and flow over no-slip substrates. The former regime is valid for early times, when the depth of the overlying fluid is much less than the slip length, and the latter is valid for late times, when the depth is much greater than the slip length. Solutions to the full model approach similarity solutions describing the two regimes for early and late times. We confirm our theoretical predictions by conducting a series of analogue laboratory experiments.
Publisher
Cambridge University Press (CUP)