A controllable sliding law for thin-film flows over slippery fluid-saturated substrates: theory and experiments

Author:

Yan ZihanORCID,Kowal Katarzyna N.ORCID

Abstract

We develop a theoretical and experimental framework for generating slip underneath thin-film flows of viscous fluids in the laboratory, with the ability to control slip as desired. Such a framework is useful for large-scale fluid-mechanical experiments in which basal sliding is important. In particular, we consider the flow of a thin film of viscous fluid spreading over a structured, slippery substrate, involving a sequence of two-dimensional cavities that are prewetted with a fluid of smaller viscosity. By averaging over small-scale inhomogeneities, we demonstrate that such a substrate gives rise to a macroscopic linear sliding law, or Navier slip condition, that is effectively homogeneous on the large scale. The slip length, determining the slipperiness of the substrate, is proportional to the viscosity ratio and width of each cavity. As such, the slipperiness of the substrate can be controlled by altering the viscosity ratio, as desired. Two asymptotic regimes arise, describing flow over very slippery substrates and flow over no-slip substrates. The former regime is valid for early times, when the depth of the overlying fluid is much less than the slip length, and the latter is valid for late times, when the depth is much greater than the slip length. Solutions to the full model approach similarity solutions describing the two regimes for early and late times. We confirm our theoretical predictions by conducting a series of analogue laboratory experiments.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3