Abstract
AbstractWe use models incorporating the normalized difference vegetation index (NDVI) derived from remote sensing satellites to improve soybean yield predictions in 10 major producing states in the United States. Unlike traditional methods that assume an ordinary least squares model applies to all observations, we allow for global flexibility in the relationship between NDVI and soybean yield by using the flexible Fourier transform (FFT) model. FFT results confirm that there is a nonlinear response of soybean yield to NDVI over the growing season. Out-of-sample predictions indicate that allowing for global flexibility with the FFT improves the predictions in time-series prediction and forecasting.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Agricultural and Biological Sciences (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献