Application of Digital Image Processing Techniques for Agriculture: A Review

Author:

Pablo Guerra Juan,Cuevas Francisco

Abstract

Agriculture plays a crucial role in human survival, necessitating the development of efficient methods for food production. This chapter reviews Digital Image Processing (DPI) methods that utilize various color models to segment elements like leaves, fruits, pests, and diseases, aiming to enhance agricultural crop production. Recent DPI research employs techniques such as image subtraction, binarization, color thresholding, statistics, and convolutional filtering to segment and identify crop elements with shared attributes. DPI algorithms have a broad impact on optimizing resources for increased food production through agriculture. This chapter provides an overview of DPI techniques and their applications in agricultural image segmentation, including methods for detecting fruit quality, pests, and plant nutritional status. The review’s contribution lies in the selection and analysis of highly cited articles, offering readers a current perspective on DPI’s application in agricultural processes.

Publisher

IntechOpen

Reference98 articles.

1. FAO. Our approach — Food Systems — Food and Agriculture Organization of the United Nations. 2023. Available from:

2. Shin J, Mahmud MS, Rehman TU, Ravichandran P, Heung B, Chang YK. Trends and prospect of machine vision technology for stresses and diseases detection in precision agriculture. AgriEngineering. 2023;(1):20-39

3. Gebbers R, Adamchuk VI. Precision agriculture and food security. Science. 2010;(5967):828-831

4. Smith R, Baillie J, McCarthy A, Raine S, Baillie C. Review of precision irrigation technologies and their application. In: National Centre for Engineering in Agriculture University of Southern Queensland Toowoomba Australia. 2010

5. Tantalaki N, Souravlas S, Roumeliotis M. Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of Agricultural and Food Information. 2019;(4):344-380

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3