The Stability of Finite Miscible Liquid-Liquid Stratified Microchannel Flow with Boundary Slip

Author:

You X.-Y.,Zhang L.-D.,Zheng J.-R.

Abstract

ABSTRACTThe effects of boundary slip on the stability of finite miscible/immiscible liquid-liquid stratified microchannel flow were investigated. In this approach, the boundary slip was considered by Navier slip assumption and the finite-miscible liquid-liquid interface was modeled by double film model. The stability of the flow was studied by the small disturbance theory. The results indicated that the effects of boundary slip on the instability of finite miscible stratified microchannel flow with different viscosity ratio, interface location and the property of interface (i.e. thickness and viscosity distribution of mixed layer) are distinct and complex. The effect intensity of upper and lower boundary slip on flow stability is determined by viscosity ratio, interface structure (different Ns) and film thickness. When the interface changes from the channel center to the wall, the critical Re number is enhanced by boundary slip and especially markedly near the critical line and after across the critical line it suddenly decreases to a small value (even to 424). The flow stability always increased by boundary slip.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3