Affiliation:
1. Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan
2. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Abstract
This study focuses on exploring the mechanical properties and nonlinear stress-strain behaviors of monoclinic Ni3Sn4single crystals under uniaxial tensile test and also their size, temperature, and strain-rate dependence through constant temperature molecular dynamics (MD) simulation using Berendsen thermostat. The deformation evolution of the Ni3Sn4atomic nanostructure during the tensile test is observed. In addition, the tensile yield strains of various Ni3Sn4single crystals at different strain rates and temperatures are characterized through unloading process. At last, by way of linear regression analysis, the corresponding normal elastic stiffness constants are approximated and then compared with the literature theoretical data. The radial distribution function analysis shows that Ni3Sn4single crystal in a one-dimensional nanowire configuration would become a highly disordered structure after thermal equilibration, thereby possessing amorphous-like mechanical behaviors and properties. The initial elastic deformation of Ni3Sn4single crystal is governed by the reconfiguration of surface atoms, and its deformation evolution after further uniaxial tensile straining is characterized by Ni=Sn bond straightening, bond breakage, inner atomic distortion, cross-section shrinking, and rupture. The calculated normal elastic constants of Ni3Sn4single crystal are found to be consistent with the literature theoretical data.
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献