High-Speed Centrifugal Spinning Polymer Slip Mechanism and PEO/PVA Composite Fiber Preparation

Author:

Ye Peiyan1ORCID,Guo Qinghua1,Zhang Zhiming2,Xu Qiao1

Affiliation:

1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China

2. Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430200, China

Abstract

Composite nanofibers with excellent physical and chemical properties are widely used in new energy, biomedical, environmental, electronic, and other fields. Their preparation methods have been investigated extensively by many experts. High-speed centrifugal spinning is a novel method used to fabricate composite nanofibers. The slip mechanism of polymer solution flows is an important factor affecting the morphology and quality of composite nanofibers prepared by high-speed centrifugal spinning. As the polymer solution flows, the liquid wall slip occurs inside the nozzle, followed by liquid–liquid interface slip and gas–liquid interface slip. The factors affecting polymer slip were investigated by developing a mathematical model in the nozzle. This suggests that the magnitude of the velocity is an important factor that affects polymer slip and determines fiber quality and morphology. Under the same rotational speed, the smaller the nozzle diameter, the greater the concentration of velocity distribution and the smaller the diameter of the produced composite nanofibers. Finally, PEO/PVA composite nanofibers were prepared using high-speed centrifugal spinning equipment at 900–5000 rpm and nozzle diameters of 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm. The morphology and quality of the collected PEO/PVA composite nanofibers were analyzed using scanning electron microscopy (SEM) and TG experiments. Then, the optimal parameters for the preparation of PEO/PVA composite nanofibers by high-speed centrifugal spinning were obtained by combining the external environmental factors in the preparation process. Theoretical evaluation and experimental data were provided for the centrifugal composite spinning slip mechanism and for the preparation of composite nanofibers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3