Exploration of adulteration in common raw spices using antenna-based sensor

Author:

Nitika ORCID,Kaur Jaswinder,Khanna Rajesh

Abstract

Abstract The ability of food products to store and dissipate electromagnetic energy is determined by the material's dielectric properties. In relation to this phenomenon, a non-destructive technique is presented for food evaluation based on the shift in resonant frequency and reflection coefficient magnitude value of the proposed slot-loaded microstrip line-fed antenna-based sensor caused by the change in dielectric properties of the food material. In this work, a miniaturized antenna sensor of 10 × 10 mm2 size comprised of a dielectric substrate FR-4 with permittivity (εr) = 4.4 having ground plane at the bottom and a radiating element at the top is designed to operate at 13.3 GHz. Three samples of spices, i.e. red chilli powder, black pepper powder, and turmeric powder, are considered for quality monitoring whose relationship in terms of reflection coefficient, resonant frequency, and dielectric permittivity at 13.17, 12.61, and 13.09 GHz respectively is analyzed. Further, second-order polynomial model is derived to predict dielectric permittivity of the material under test with high accuracy. The experimental procedure of this proposed sensor is based upon the interaction of the sample food materials with the electromagnetic field owing to shift in resonant frequency as a function of dielectric permittivity of the samples. The proposed antenna sensor has a Q-factor of 409, showing significantly high sensitivity of 280 MHz with 98% accuracy and standard deviation less than the difference between unadulterated and adulterated values, giving resolution high enough to distinguish adulteration with an acceptable statistical accuracy.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3