Forcing symmetry exchanges and flow reversals in turbulent wakes

Author:

Barros DiogoORCID,Borée Jacques,Cadot OlivierORCID,Spohn Andreas,Noack Bernd R.ORCID

Abstract

Turbulent wakes past bluff bodies commonly present asymmetric flow states reminiscent of bifurcations in the laminar regime. Understanding the sensitivity of these states to flow forcing is crucial to the modelling and control of flow symmetry properties. In this study, the near wake of a rectangular bluff body in proximity to a wall is disturbed by the use of passive devices located between the model and the wall, upstream of the massive flow separation occurring at the blunt trailing edges. Due to the proximity to the boundary, the wake initially presents wall-normal asymmetry and a negative wall-normal pressure gradient along the base. The application of disturbances with variable size, however, sets flow symmetry along the wall-normal plane, leading to the intermittent spanwise wake reversals reported recently in the literature. A further increase in the size of perturbation suppresses wake switching, and wall-normal asymmetry is recovered, but with a positive wall-normal pressure gradient. The dynamical features of this bifurcation scenario can be retrieved using two coupled symmetry-breaking models for spanwise and wall-normal pressure gradients. This confirms the high sensitivity of the separated flow to external perturbations. More importantly, the results unify observations of the bluff-body wake topologies covered in previous investigations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3