Transition and turbulence in horizontal convection: linear stability analysis

Author:

Passaggia Pierre-YvesORCID,Scotti AlbertoORCID,White Brian

Abstract

The linear instability mechanisms of horizontal convection in a rectangular cavity forced by a horizontal buoyancy gradient along its surface are investigated using local and global stability analyses for a Prandtl number equal to unity. The results show that the stability of the base flow, a steady circulation characterized by a narrow descending plume and a broad upwelling region, depends on the Rayleigh number, $Ra$. For free-slip boundary conditions at a critical value of $Ra\approx 2\times 10^{7}$, the steady base flow becomes unstable to three-dimensional perturbations, characterized by counter-rotating vortices originating within the plume region. A Wentzel–Kramers–Brillouin (WKB) method applied along closed streamlines demonstrates that this instability is of a Rayleigh–Taylor type and can be used to accurately reconstruct the global instability mode. In the case of no-slip boundary conditions, the base flow also becomes unstable to a self-sustained two-dimensional instability whose critical Rayleigh number is $Ra\approx 1.7\times 10^{8}$. Beyond this critical $Ra$, two-dimensional equilibrium stationary states of the Navier–Stokes equations are computed using the selective frequency damping method. The two-dimensional onset of instability is shown to be characterized by a family of modes also originating within the plume. A local spatio-temporal stability analysis shows that the flow becomes absolutely unstable at the origin of the plume. Taken together, these results illustrate the mechanisms behind the onset of turbulence that has been observed in horizontal convection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transition of natural convection on a cooled circular surface with heated annular extension;International Communications in Heat and Mass Transfer;2024-02

2. Weakly nonlinear bifurcation behaviour at the onset of instability in horizontal convection using an advective buoyancy approximation;International Communications in Heat and Mass Transfer;2023-12

3. Stratified horizontal convection;Journal of Fluid Mechanics;2023-08-31

4. Competition between Rayleigh–Bénard and horizontal convection;Journal of Fluid Mechanics;2022-08-22

5. Linear stability analysis of horizontal convection under a Gay-Lussac type approximation;International Journal of Heat and Mass Transfer;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3