Abstract
Surface differential heating on a stably stratified fluid body drives an overturning circulation confined to the upper fluid region – here coined stratified horizontal convection (SHC). In this manuscript, we investigate the dynamics of SHC via laboratory experiments, exploring local and global flow properties. By considering the available potential energy of the system, we derive a unique length scale of SHC and introduce the Péclet number
$Pe$
that captures both the stabilising effect of stratification and the destabilising effect of the baroclinic adjustment. We found that
$Pe$
characterises local and global flow properties, including the fluid transport of the overturning circulation, the available mechanical energy and the flow dimensionality. Our study provides insights into the fluid dynamics of stratified environments that experience horizontal convection, such as lakes, oceans and atmospheres.
Funder
Japan Society for the Promotion of Science
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献