Competition between Rayleigh–Bénard and horizontal convection

Author:

Couston Louis-AlexandreORCID,Nandaha Joseph,Favier BenjaminORCID

Abstract

We investigate the dynamics of a fluid layer subject to a bottom heat flux and a top monotonically increasing temperature profile driving horizontal convection (HC). We use direct numerical simulations and consider a large range of flux-based Rayleigh numbers $10^6 \leq Ra_F \leq 10^9$ and imposed top horizontal to bottom vertical heat flux ratios $0 \leq \varLambda \leq 1$ . The fluid domain is a closed two-dimensional box with aspect ratio $4\leq \varGamma \leq 16$ and we consider no-slip boundaries and adiabatic side walls. We demonstrate a regime transition from Rayleigh–Bénard (RB) convection to HC at $\varLambda \approx 10^{-2}$ , which is independent of $Ra_F$ and $\varGamma$ . At small $\varLambda$ , the flow is organised in multiple overturning cells with approximately unit aspect ratio, whereas at large $\varLambda$ a single cell is obtained. The RB-relevant Nusselt number scaling with $Ra_F$ and the HC-relevant Nusselt number scaling with the horizontal Rayleigh number $Ra_L=Ra_F\varLambda \varGamma ^4$ are in good agreement with previous results from classical RB convection and HC studies in the limit $\varLambda \ll 10^{-2}$ and $\varLambda \gg 10^{-2}$ , respectively. We demonstrate that the system is multi-stable near the transition $\varLambda \approx 10^{-2}$ , i.e. the exact number of cells not only depends on $\varLambda$ but also on the system's history. Our results suggest that subglacial lakes, which motivated this study, are likely to be dominated by RB convection, unless the slope of the ice–water interface, which controls the horizontal temperature gradient via the pressure-dependence of the freezing point, is greater than unity.

Funder

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3