Inertial gravity currents produced by fluid drainage from an edge

Author:

Momen MostafaORCID,Zheng Zhong,Bou-Zeid Elie,Stone Howard A.

Abstract

We present theoretical, numerical and experimental studies of the release of a finite volume of fluid instantaneously from an edge of a rectangular domain for high Reynolds number flows. For the cases we considered, the results indicate that approximately half of the initial volume exits during an early adjustment period. Then, the inertial gravity current reaches a self-similar phase during which approximately 40 % of its volume drains and its height decreases as $\unicode[STIX]{x1D70F}^{-2}$, where $\unicode[STIX]{x1D70F}$ is a dimensionless time that is derived with the typical gravity wave speed and the horizontal length of the domain. Based on scaling arguments, we reduce the shallow-water partial differential equations into two nonlinear ordinary differential equations (representing the continuity and momentum equations), which are solved analytically by imposing a zero velocity boundary condition at the closed end wall and a critical Froude number condition at the open edge. The solutions are in good agreement with the performed experiments and direct numerical simulations for various geometries, densities and viscosities. This study provides new insights into the dynamical behaviour of a fluid draining from an edge in the inertial regime. The solutions may be useful for environmental, geophysical and engineering applications such as open channel flows, ventilations and dam-break problems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3