The propagation of a gravity current into a linearly stratified fluid

Author:

MAXWORTHY T.,LEILICH J.,SIMPSON J. E.,MEIBURG E. H.

Abstract

The constant initial speed of propagation (V) of heavy gravity currents, of density ρC, released from behind a lock and along the bottom boundary of a tank containing a linearly stratified fluid has been measured experimentally and calculated numerically. The density difference, bottom to top, of the stratification is (ρb−ρ0) and its intrinsic frequency is N. For a given ratio of the depth of released fluid (h) to total depth (H) it has been found that the dimensionless internal Froude number, Fr = V/NH, is independent of the length of the lock and is a logarithmic function of a parameter R = (ρC−ρ0)/(ρb−ρ0), except at small values of h/H and R close to unity. This parameter, R, is one possible measure of the relative strength of the current (ρC−ρ0) and stratification (ρb−ρ0). The distance propagated by the current before this constant velocity regime ended (Xtr), scaled by h, has been found to be a unique function of Fr for all states tested. After this phase of the motion, for subcritical values of Fr, i.e. less than 1/π, internal wave interactions with the current resulted in an oscillation of the velocity of its leading edge. For supercritical values, velocity decay was monotonic for the geometries tested. A two-dimensional numerical model incorporating a no-slip bottom boundary condition has been found to agree with the experimental velocity magnitudes to within ±1:5%.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3