Effect of stratification on the propagation of a cylindrical gravity current

Author:

Lam W.K.ORCID,Chan L.ORCID,Sutherland D.ORCID,Manasseh R.ORCID,Moinuddin K.ORCID,Ooi A.ORCID

Abstract

Direct numerical simulations (DNSs) of three-dimensional cylindrical release gravity currents in a linearly stratified ambient are presented. The simulations cover a range of stratification strengths $0< S\leq 0.8$ (where $S=(\rho _b^*-\rho _0^*)/(\rho _c^*-\rho _0^*), \rho _b^*, \rho _0^*$ and $\rho _c^*$ are the dimensional density at the bottom of the domain, top of the domain and the dense fluid, respectively) at two different Reynolds numbers. A comparison between the stratified and unstratified cases illustrates the influence of stratification strength on the dynamics of cylindrical gravity currents. Specifically, the front velocity in the slumping phase decreases with increasing stratification strength whereas the duration of the slumping phase increases with increments of $S$ . The Froude number calculated in this phase shows a good agreement with models proposed by Ungarish & Huppert (J. Fluid Mech., vol. 458, 2002, pp. 283–301) and Ungarish (J. Fluid Mech., vol. 548, 2006, pp. 49–68), originally developed for planar gravity currents in a stratified ambient. In the inertial phase, the front velocity across cases with different stratification strengths adheres to a power-law scaling with an exponent of $-$ 1/2. Higher Reynolds numbers led to more frequent lobe splitting and merging, with lobe size diminishing as stratification strength increased. Strong interactions among inner vortex rings occurred during the slumping phase, leading to the early formation of hairpin vortices in weakly stratified cases, while strongly stratified cases exhibited delayed vortex formation and less turbulence.

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

Reference86 articles.

1. Gravity currents and internal waves in a stratified fluid;White;J. Fluid Mech.,2008

2. A systematic study of the grid requirements for a spectral element method solver;Zahtila;Comput. Fluids,2023

3. Lam, W.K. , Chan, L. , Hasini, H. & Ooi, A. 2018 b Direct numerical simulation of two-dimensional stratified gravity current flow with varying stratification and aspect ratio. In 21st Australasian Fluid Mechanics Conference, pp. 1–5.

4. On the front velocity of gravity currents;Cantero;J. Fluid Mech.,2007

5. Chan, L. , Lam, W.K. & Ooi, A. 2018 Analysis of a numerically simulated two- and three-dimensional planar gravity current with varying aspect ratio. In Proceedings of the 11th Australasian Heat and Mass Transfer Conference, pp. 1–7.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3