Design of a sub-scale fan for a boundary layer ingestion test with by-pass flow

Author:

Mårtensson H.ORCID,Lejon M.,Ghosh D.,Åkerberg M.,Rasimarzabadi F.,Neuteboom M.

Abstract

AbstractA design of a sub-scale Boundary Layer Ingestion (BLI) fan for a transonic test rig is presented. The fan is intended to be used in flow conditions with varying distortion patterns representative of a BLI application on an aircraft. The sub-scale fan design is based on a design study of a full-scale fan for a BLI demonstration project for a Fokker 100 aircraft. CFD results from the full-scale fan design and the ingested distortion pattern from CFD analyses of the whole aircraft are used as inputs for this study. The sub-scale fan is designed to have similar performance characteristics to the full-scale fan within the capabilities of the test facility. The available geometric rig envelope in the test facility necessitates a reduction in geometric scale and consideration of the operating conditions. Fan blades and vanes are re-designed for these conditions in order to mitigate the effects of the scaling. The effects of reduced size, increased relative tip clearance and thicknesses of the blades and vanes are evaluated as part of the step-by-step adaption of the design to the sub-scale conditions. Finally, the installation effects in the rig are simulated including important effects of the by-pass flow on the running characteristics and the need to control the effective fan nozzle area in order to cover the available fan operating range. The predicted operating behaviour of the fan as installed in the coming transonic test rig gives strong indication that the sub-scale fan tests will be successful.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference16 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of distortion on a BLI fan;The Aeronautical Journal;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3