Aerodynamics of Boundary Layer Ingesting Fans

Author:

Gunn E. J.1,Hall C. A.1

Affiliation:

1. University of Cambridge, Cambridge, UK

Abstract

Boundary Layer Ingesting (BLI) turbofan engines could offer reduced fuel burn compared with podded engines, but the fan stage must be designed to run continuously with severe inlet distortion. This paper aims to explain the fluid dynamics and loss sources in BLI fans running at a cruise condition. High-resolution experimental measurements and full-annulus unsteady CFD have been performed on a low-speed fan rig running with a representative BLI inlet velocity profile. A three-dimensional flow redistribution is observed, leading to an attenuation of the axial velocity non-uniformity upstream of the rotor and to non-uniform swirl and radial angle distributions at rotor inlet. The distorted flow field is shown to create circumferential and radial variations in diffusion factor with a corresponding loss variation around the annulus. Additional loss is generated by an unsteady separation of the casing boundary layer, caused by a localised peak in loading at the rotor tip. Non-uniform swirl and radial angles at rotor exit lead to increased loss in the stator due to the variations in profile loss and corner separation size. An additional CFD calculation of a transonic fan running with the same inlet profile is used to show that BLI leads to wide variations in rotor shock structure, strength and position and hence to loss generation through shock-boundary layer interaction, but otherwise contained the same flow features as the low-speed case. For both fan geometries, BLI was found to reduce the stage efficiency by around 1–2% relative to operation with uniform inlet flow.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3