Numerical Modeling to Investigate the Aerodynamics of a Boundary-Layer Ingested Transonic Fan

Author:

Giri Ritangshu1,Turner Mark G.1

Affiliation:

1. University of Cincinnati, Cincinnati, Ohio 45221

Abstract

Boundary-layer ingested engines have the potential to offer significantly reduced fuel burn, but the fan stage must be designed to run efficiently with a distorted inflow. It must also be able to withstand unsteady aerodynamic loads resulting from a complex nonuniform flowfield. This paper applies different numerical methods for an improved understanding of the aerodynamic interaction between a transonic fan and inlet distortion. A single-stage transonic tail cone thruster fan was designed using both in-house and commercial tools operating in an inlet distortion flowfield. This paper demonstrates that the relevant metrics required to compute the aerodynamic performance of a fan stage in distorted conditions can be reasonably modeled with a few harmonics using the nonlinear harmonic method in a fraction of time in comparison to a full annulus time marching solution. The nonlinear harmonic method also reduces the computational domain, and hence reduces the solution runtime by an order of magnitude. However, it fails to accurately resolve the wake and potential field transfer across the blade rows due to a limited number of harmonics being applied. A detailed aerodynamic description of the unsteady inflow distortion, the interacting blade-row mechanisms, the flow redistribution upstream of the rotor, the distortion transfer across the different blade rows, and the corresponding aerodynamic losses can be analyzed accurately using only a full annulus time-marching method.

Funder

NASA Glenn Research Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3