Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance

Author:

Sakulkaew S.1,Tan C. S.2,Donahoo E.3,Cornelius C.4,Montgomery M.5

Affiliation:

1. e-mail:

2. e-mail:  MIT Gas Turbine Laboratory, Cambridge, MA 02139

3. Siemens Energy, Inc., Orlando, FL 32828 e-mail:

4. Siemens AG, Mülheim an der Ruhr, 45473Germany e-mail:

5. Siemens Energy, Inc., Orlando, FL 32828  e-mail:

Abstract

Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number ∼ 2 × 106 to 7 × 106. The results reveal three distinct behaviors of efficiency variation with tip gap. For relatively small tip gap (less than 0.8% span), the change in efficiency with tip gap is nonmonotonic with an optimum tip gap for maximum efficiency. The optimum tip gap is set by two competing flow processes: decreasing tip leakage mixing loss and increasing viscous shear loss at the casing with decreasing tip gap. An optimum tip gap scaling is established and shown to satisfactorily quantify the optimal gap value. For medium tip gap (0.8%–3.4% span), the efficiency decreases approximately on a linear basis with increasing tip clearance. However, for tip gap beyond a threshold value (3.4% span for this rotor), the efficiency becomes less sensitive to tip gap as the blade tip becomes more aft-loaded thus reducing tip flow mixing loss in the rotor passage. The threshold value is set by the competing effects between increasing tip leakage flow and decreasing tip flow induced mixing loss with increasing tip gap. Thus, to desensitize compressor performance variation with blade gap, rotor should be tip aft-loaded and hub fore-loaded while stator should be tip fore-loaded and hub aft-loaded as much as feasible. This reduces the opportunity for clearance flow mixing loss and maximizes the benefits of reversible work from unsteady effects in attenuating the clearance flow through the downstream blade-row. The net effect can be an overall compressor performance enhancement in terms of efficiency, pressure rise capability, robustness to end gap variation, and potentially useful operable range broadening.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3