Abstract
Abstract
This paper proposes an approach to diagnosing the skill of a machine-learning prediction model based on finding combinations of variables that minimize the normalized mean square error of the predictions. This technique is attractive because it compresses the positive skill of a forecast model into the smallest number of components. The resulting components can then be analyzed much like principal components, including the construction of regression maps for investigating sources of skill. The technique is illustrated with a machine-learning model of week 3–4 predictions of western US wintertime surface temperatures. The technique reveals at least two patterns of large-scale temperature variations that are skillfully predicted. The predictability of these patterns is generally consistent between climate model simulations and observations. The predictability is determined largely by sea surface temperature variations in the Pacific, particularly the region associated with the El Nino-Southern Oscillation. This result is not surprising, but the fact that it emerges naturally from the technique demonstrates that the technique can be helpful in “explaining” the source of predictability in machine-learning models.
Funder
National Science Foundation
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献