Laplacian Eigenfunctions for Climate Analysis

Author:

DelSole Timothy1,Tippett Michael K.2

Affiliation:

1. George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Abstract This paper proposes a new method for representing data in a general domain on a sphere. The method is based on the eigenfunctions of the Laplace operator, which form an orthogonal basis set that can be ordered by a measure of length scale. Representing data with Laplacian eigenfunctions is attractive if one wants to reduce the dimension of a dataset by filtering out small-scale variability. Although Laplacian eigenfunctions are ubiquitous in climate modeling, their use in arbitrary domains, such as over continents, is not common because of the numerical difficulties associated with irregular boundaries. Recent advances in machine learning and computational sciences are exploited to derive eigenfunctions of the Laplace operator over an arbitrary domain on a sphere. The eigenfunctions depend only on the geometry of the domain and hence require no training data from models or observations, a feature that is especially useful in small sample sizes. Another novel feature is that the method produces reasonable eigenfunctions even if the domain is disconnected, such as a land domain comprising isolated continents and islands. The eigenfunctions are illustrated by quantifying variability of monthly mean temperature and precipitation in climate models and observations. This analysis extends previous studies by showing that climate models have significant biases not only in global-scale spatial averages but also in global-scale dipoles and other physically important structures. MATLAB and R codes for deriving Laplacian eigenfunctions are available upon request.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference18 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3