Comparison of different excitation modes for the analysis of light elements with a TXRF vacuum chamber

Author:

Prost J.,Wobrauschek P.,Streli C.

Abstract

The aim of this work was to compare different excitation modes for the analysis of light elements from carbon (Z = 6) upwards using a total reflection X-ray fluorescence analysis (TXRF) vacuum chamber which allows the attachment of different X-ray tubes and detectors. In the first set of experiments, two water-cooled high-power X-ray tubes with Cr (Z = 25) and Cu (Z = 29) anodes, respectively, were compared with an air-cooled low-power tube with Mo anode (Z = 42) and a thin Be window for the transmission of Mo-L lines. In the first two cases, monochromatic radiation was used for excitation, while in the case of the Mo tube the multilayer acted as a cut-off reflector and part of the Mo bremsstrahlung continuum together with the Mo-L series were used for excitation. Multi-element standards containing elements ranging from Na (Z = 11) to Ti (Z = 22) were analyzed by a silicon drift detector (SDD) with a 300 nm ultrathin polymer window (UTW). Detection limits were calculated and compared for the three excitation modes. The second set of experiments was performed using an air-cooled low-power X-ray tube with Rh anode (Z = 45) in order to show that a conventional SDD with a 25 μm beryllium window can be used for the detection of elements from Na upwards. The use of compact air-cooled low-power X-ray tubes together with Peltier-cooled SDDs with UTW should lead to the development of highly sensitive tabletop vacuum TXRF spectrometers with a design optimized for the analysis of light elements. Detection limits as achieved by vacuum chambers using conventional water-cooled high-power tubes (e.g. Streli et al., 2004) are realistically achievable with the new approach.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3